A provide the standard statement

Generative Chemistry, Deep Learning and Traditional Models Moderated by Dr. Eric Gifford

Eric Gifford, PhD. Business Development Consultant Collaborative Drug Discovery

LIVE

Thursday, September 26th 2024 8:00 AM (PT) | 11:00 AM (ET) | 16:00 (BST)

Peter Gedeck, PhD. Senior Informatician Collaborative Drug Discovery

Pat Walters, PhD. Chief Data Officer Relay Therapeutics

Do you have a question to ask our panel?

Open the ZOOM Q&A type in your question during the webinar

We will reserve time and answer as many questions as we can at the end

A provide the standard statement

Generative Chemistry, Deep Learning and Traditional Models Moderated by Dr. Eric Gifford

Eric Gifford, PhD. Business Development Consultant Collaborative Drug Discovery

LIVE

Thursday, September 26th 2024 8:00 AM (PT) | 11:00 AM (ET) | 16:00 (BST)

Peter Gedeck, PhD. Senior Informatician Collaborative Drug Discovery

Pat Walters, PhD. Chief Data Officer Relay Therapeutics

What does our field need to move forward?

(Some topics for today's discussion)

Comparable Data

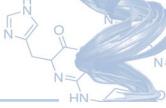
Open-source tool kits and commercial software

Robust Models & AI

Suppose you're doing machine learning and you need some bioactivity (or ADME) data sets to work with.

You want/need to use public data, so you start with ChEMBL

You notice that you can increase the size of the data sets available to you *significantly* if you combine results taken from different assays but run on the same target

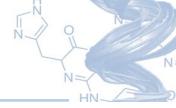

Is it safe to do this?

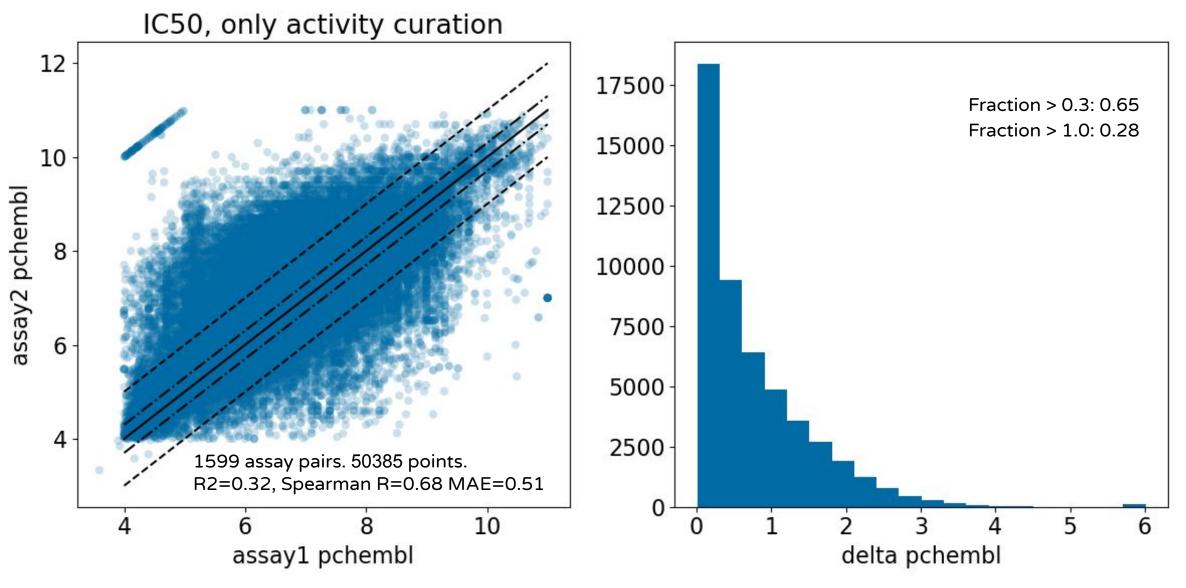
Unfortunately common in our field

"I really need more data, so I'm just going to combine the assays. How bad can it possibly be?"

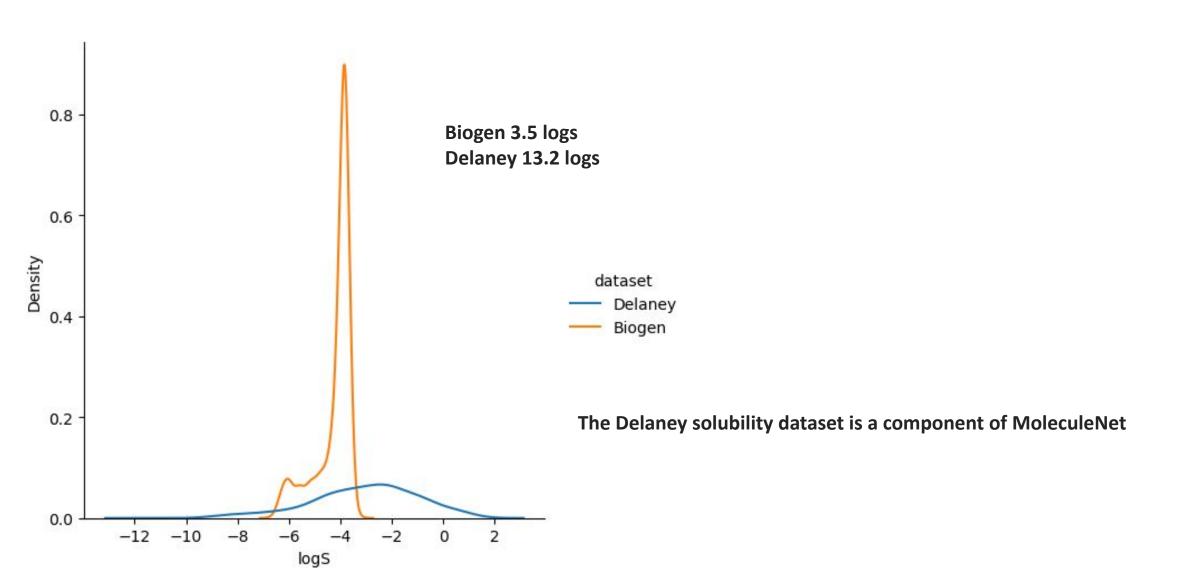
Relates IC50 to Ki for competitive inhibition assays: Ki = IC50/(1+[S]/Km)

where:

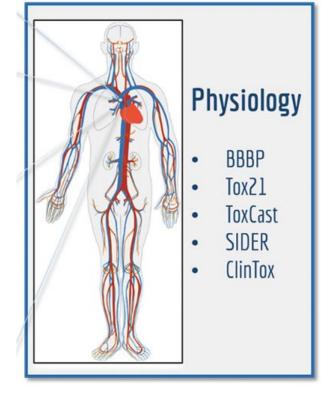

- [S] = concentration of the substrate
- Km = the affinity constant of the substrate


This does *not* magically let you convert IC50 (generally unsafe to compare across assays) to Ki (safe to compare across assays): you need to know both [S] and Km in order to use it, and if you know [S] and Km then you *already* know whether or not it's safe to compare

A fun take on the relationship between Ki and IC50: https://krhornberger.substack.com/p/tweetorial-ic50-vs-ki


It's pretty bad.

8



Focus on Simple, Consistent, Well-Defined Endpoints

SIDER Categories

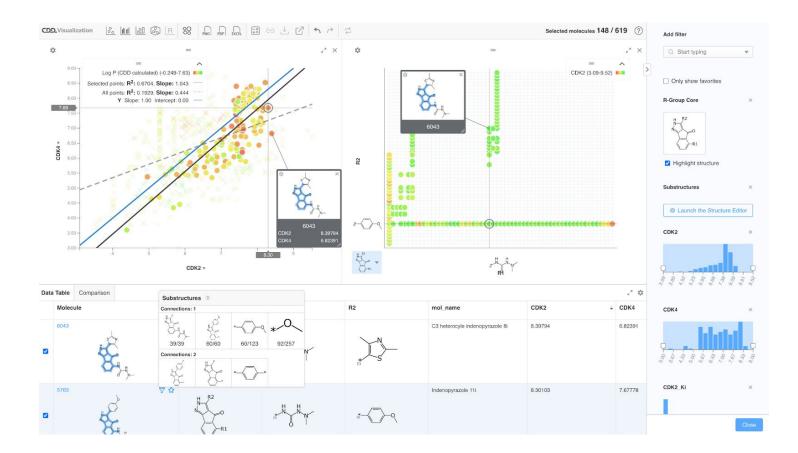
Hepatobiliary disorders
Metabolism and nutrition disorders
Product issues
Eye disorders
Investigations
Musculoskeletal and connective tissue disorders
Gastrointestinal disorders
Social circumstances
Immune system disorders
Reproductive system and breast disorders
Neoplasms benign, malignant and unspecified (incl cysts and polyps)
General disorders and administration site conditions
Endocrine disorders
Surgical and medical procedures
Vascular disorders
Blood and lymphatic system disorders
Skin and subcutaneous tissue disorders
Congenital, familial and genetic disorders
Infections and infestations
Respiratory, thoracic and mediastinal disorders Psychiatric disorders
Renal and urinary disorders
Pregnancy, puerperium and perinatal conditions
Ear and labyrinth disorders
Cardiac disorders
Nervous system disorders
Injury, poisoning and procedural complications

CDD and Open Source

CDD Chemistry Engine

- Backend uses RDKit
- Frontend uses RDKit and WebMolKit (Alex Clark)

CDD contributions to RDKit:


• Representation of atropisomers

Ketcher (open source structure editor):

- Work with *epam* to implement our requirements
- Focus on adding macromolecule functionality (non-natural peptides, ADC, ...)

CDD Visualization

 Not open source, but scientists can use CDD Visualization for free

https://www.collaborativedrug.com/scientific-data-visualization-software

RDKit: State of the Toolkit

Greg Landrum @dr_greg_landrum@sciencemastodon.com @greg_landrum.bsky.social

Usage in Commercial Tools

- Amazon Web Services
- Collaborative Drug Discovery
- Cresset Software
- Dalke Scientific Software
- Datagrok
- Glysade

RDKit

- MédChemica
- NextMove Software
- Schrödinger
- SCM
- Wolfram Research

Disclaimer: this info is from public statements made by people from those companies. I almost certainly have forgotten someone

Adoption Measures

- Mailing lists: ~250 messages to rdkit-discuss from 2022.09 2023.08
- Google scholar: >2300 hits for "rdkit" in 2022, >2000 so far in 2023
- Searching github for "from rdkit import Chem" returns >27000 code results
- Each of the last nine in-person UGMs at capacity with 40-150 attendees

Models, Tools, Technologies for Comparisons

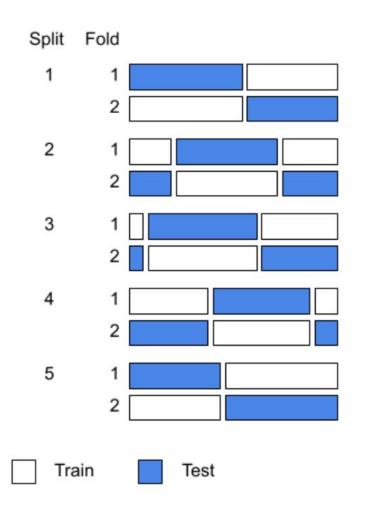
:=

PatWalters / practical_cheminformatics_tutorials (Public)

Code 🕢 Issues 11 Pull requests 🖓 Discussions 🕑 Actions 🗄 Projects 😲 Security 🗠 Insights

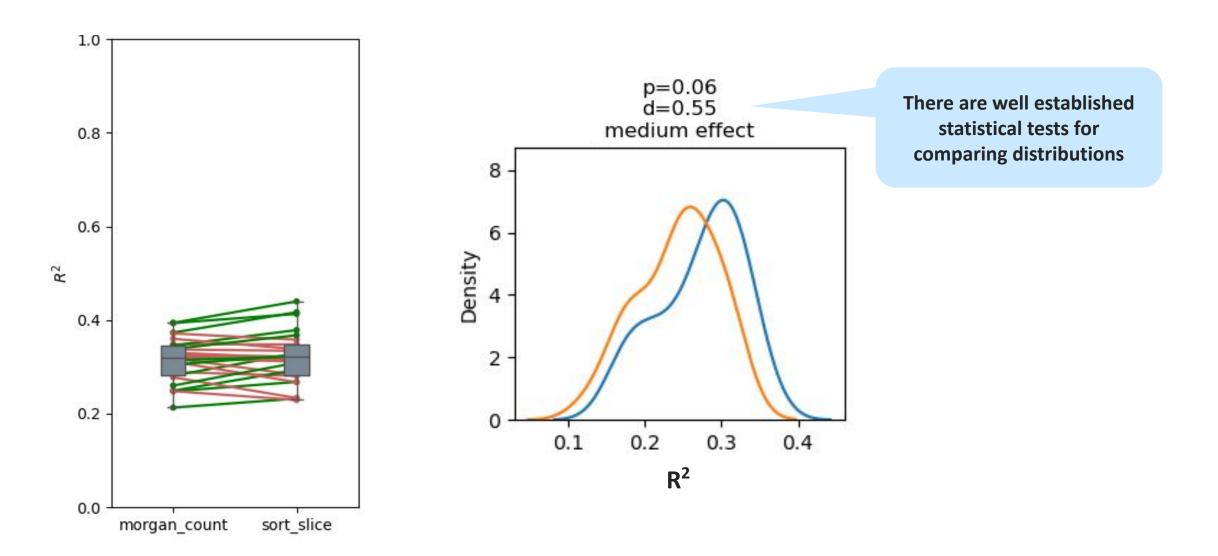
우 main 👻 우 1 Branch 😳 0 Tags		Q Go to file	<> Code -	About
Patrick Walters Added BindingDB patents		f9ca6a8 · 2 weeks ago	🕚 174 Commits	Practical Cheminformatics Tutorials
active_learning	added patent tutorial		last month	회 MIT license
chemprop	Added BindingDB patents		2 weeks ago	-∿- Activity ☆ 765 stars
clustering	updated kmeans_clustering.ipynb		last year	 45 watching
ata	added hERG.csv		last year	약 136 forks
atamol	Added clustering to datamol_1.ipynb		last year	Report repository
fundamentals	quick update to stereo_and_tautomers.ipynb		3 months ago	Releases
images	Add reaction notebooks		last year	No releases published
misc	added active learning tutorials		5 months ago	Packages
ml_models	updated classification_models.ipynb		4 months ago	No packages published
patent	updates to patent_analysis.ipynb		3 weeks ago	Contributors 2
🖿 qm	Added tautomer_energies.ipynb		3 months ago	PatWalters Patrick Walters
reaction	cosmetic changes		4 months ago	rflameiro Rafael
sar_analysis	added patent tutorial		last month	
support_libs	added free_wilson.ipynb		2 years ago	Languages
🗅 .gitignore	Initial commit		2 years ago	Jupyter Notebook 99.9%
	Initial commit		2 years ago	 Python 0.1%
README.md	Added BindingDB patents	Added BindingDB patents 2 wee		

README MIT license


Practical Cheminformatics With Open Source Software

A set of Jupyter notebooks for learning Cheminformatics. The links below will open the tutorials on Google Colab. This way you can run the notebooks without having to install software on your computer. Of course, you can also

How can we compare different modeling methods?



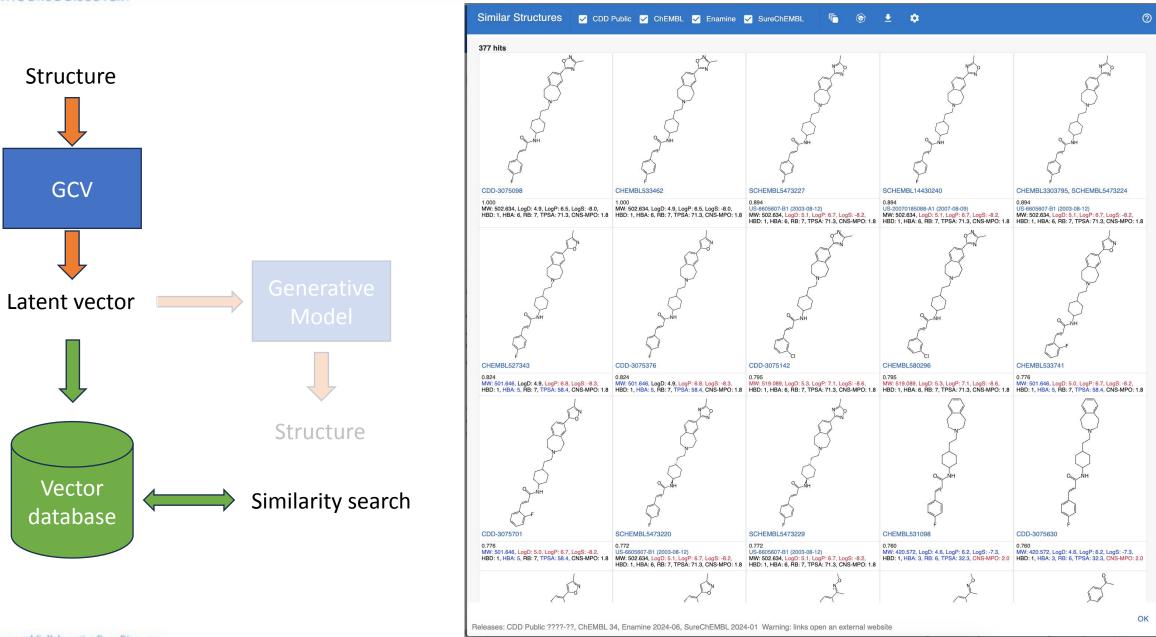
Method	Mean R ²
1	0.46
2	0.48

We Have Distributions Across Folds

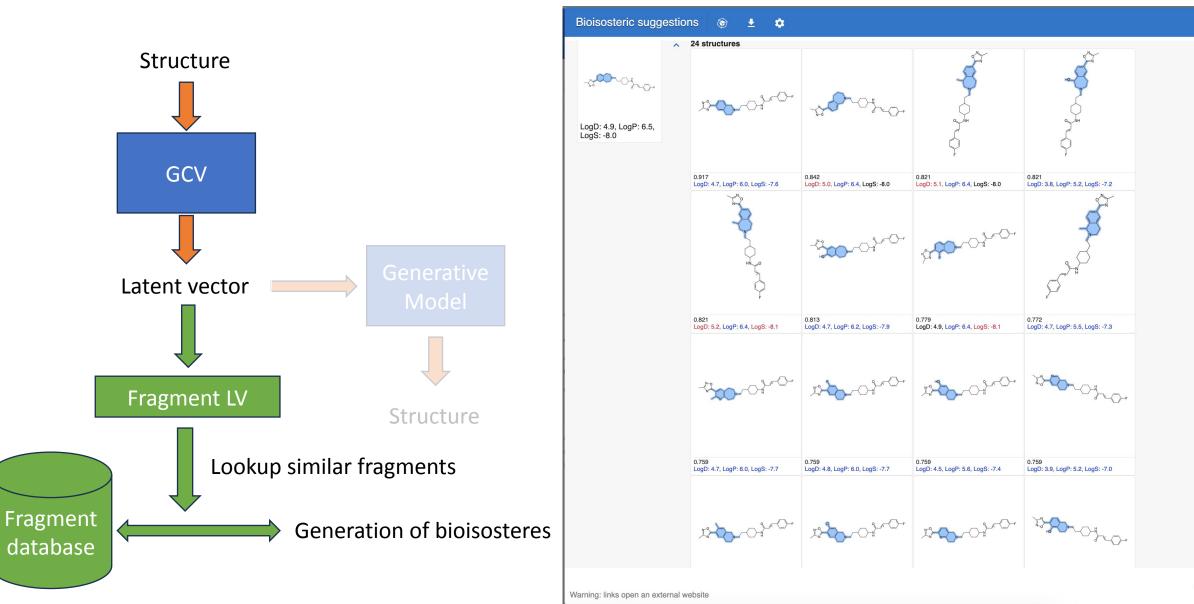
Thoughts on when it is best to use different methods: AI, Deep Learning, Generative QSAR and/or Structure-Based regression vs classification models?

What are the key differentiators?

Structure GCV Generative Latent vector Model Unique numerical representation Structure Multiple representations possible


CDD Deep Learning model

- Create *unique* numerical representation of chemical structures (latent vector)
- Generate structures for a given latent vector


Validation study showed

- Latent vector encodes chemical structure
- Latent vector encodes structural relationships

Deep Learning Similarity

Generative Molecular Bioisosteres

?

Deep Learning: ChEMBL, SureChEMBL, New IP

G

5.9

3.8

4.7

2.2

3

3.6

4.6

1

3.9

3.6

1.4

2.6

3.1

3.1

3.1

3.4

3.4

3.5

3.5

4

LogP

Log

6.3

4.3

4.7

2.2

4.1

3.6

4.6

2.3

4.1

4.8

1.4

3.1 3.1

4.8

3.6

4

3.4

3.4

3.5

4.6

LogD

462.041

333.435

385.515

306.369

337.471

202.301

405.933

294,402

365.525

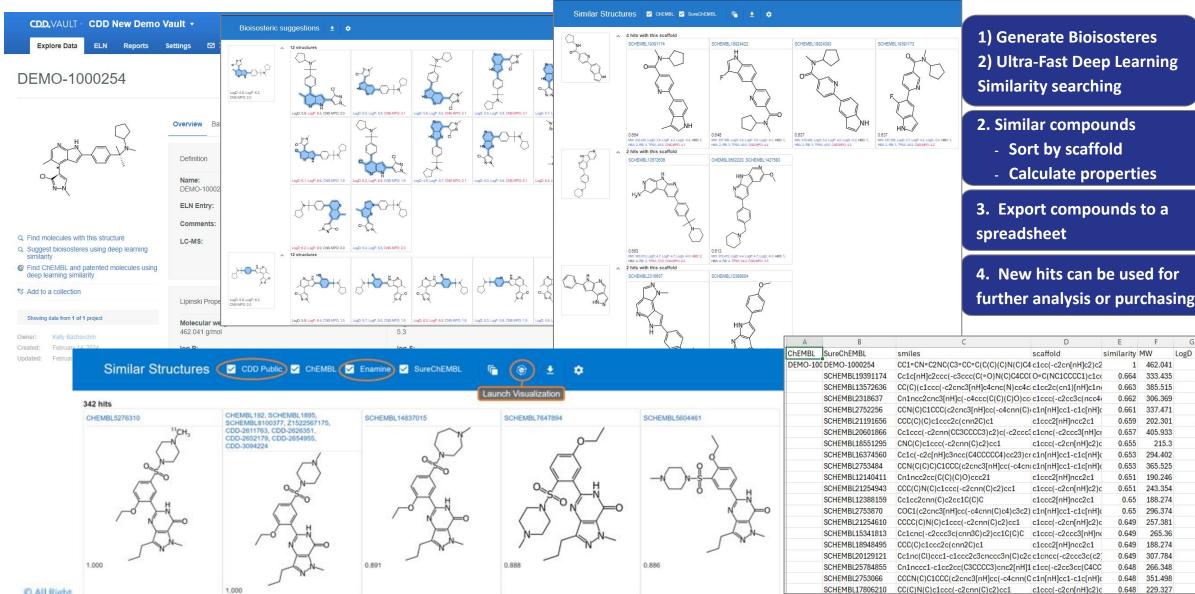
190.246

243.354

188.274

296.374

265.36


188.274

307.784

266.348

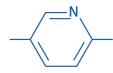
351.498

215.3

What are the roles for different ecosystem members (Academic, Commercial, Other)?

How has the field been impacted by advances in ML & LLMs?

Where do you see the field in a year and in a decade...



Single Source of Truth

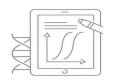
Inventory Keep track of samples, biologicals and compounds

Activity Manage and analyze experimental data

Registration Store and organize your research data

Visualization Plot datasets and mine them

www.collaborativedrug.com


Automation Connect data with our robust API, Parser, and Mapping Tools

Assays Comparison of assays using standardized protocols

AI Computer aided design

ELN Document all your research.

Curves Generate, QC, and analyze results

design

info@collaborativedrug.com